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Correlations in sea-level elevations
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~Received 21 March 1997!

We have analyzed a 105-year time record of hourly sea-level elevations for the port of Esbjerg, Denmark. In
addition to well-known periodic components, the power spectrum has a low-frequency broadband structure
which we interpret as having three regimes behaving approximately asf 0, f 21.2, and f 22.4 with increasing
frequency. We attribute this behavior to driven, damped Kelvin waves. In this context, we present a model
which considers the correlation function of a damped wave equation driven by a spatially distributed noise
source. We have also studied shorter records at other locations which display similar spectra and compared the
coherence functions with the model predictions.@S1063-651X~97!01709-1#

PACS number~s!: 05.40.1j, 92.10.Hm, 92.60.Dj
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I. INTRODUCTION

We have analyzed a 105-year time record of hourly s
level elevations from the port of Esbjerg, Denmark tak
between 1889 and 1994. The record therefore consist
nearly 106 data points, which makes possible the averag
necessary to ascertain the shape of the power spectrum
addition to well-known periodic components such as ti
peaks, the spectrum has a low-frequency broadband stru
which we interpret as having three regimes behaving
proximately as f 0, f 21.2, and f 22.4 with increasing fre-
quency.

Power spectra displaying 1/f noise occur in many system
@1,2#. It was the strong suggestion of such behavior in
Esbjerg spectrum that encouraged us to look for a sim
model based on a diffusive mechanism, as has often b
attempted~without success! for resistors@2#. It is known, for
example, that the diffusion equation will produce 1/f spectra
in all dimensions if it is forced to have white noise at t
boundaries@3#. However, this is only true for the spectrum
the spatially averaged field, whereas the sea-level rec
can certainly be regarded as point measurements. Moreo
it is obvious that at higher frequencies one is simply obse
ing some manifestation of gravity waves which presuma
requires some form of wave equation.

We have developed a model that, with certain physi
assumptions, may explain the important features of the
served spectrum. In particular, we will argue that the s
level elevation fluctuations in the North Sea are primar
caused by damped Kelvin waves driven by a spatially d
tributed white noise source. We can then compute the co
lation function for various cases, some of which are relev
for the measured spectra. Other measurements of which
are aware@4,5# probably do not fall into the class of system
described by the model.

The paper is organized as follows. In Sec. II we pres
spectral measurements of the sea-level elevations at Es
and other locations. In Sec. III we develop the model for

*Present address: Danish Hydraulic Institute, Agern Alle 5, D
2970 Ho”rsholm, Denmark.
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correlation function. In Sec. IV we compare the measur
data with the results of the model.

II. SPECTRAL MEASUREMENTS

A. Esbjerg

Esbjerg lies at the east end of the North Sea, one of
most intensely studied seas in the world. Figure 1 shows
location of Esbjerg and the other sites discussed in this w
which are in or near the North Sea. The Esbjerg record c
sists of over 105 years of sea-level elevation measurem
$yi% taken at 1-h intervals with a 1-cm resolution. The reco
was closely examined for any defects. The only problem w
sporadic gaps in the data resulting from missing measu
ments which constituted;3% of the record.

We performed a simple check for stationarity by trackin
the yearly mean and standard deviation as shown in F

- FIG. 1. Map of the North Sea region showing the locations
Esbjerg~1!, Hanstholm~2!, Hirtshals~3!, and Torshavn~4!.
2605 © 1997 The American Physical Society
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FIG. 2. Thenth yearly mean~a! and standard deviation~b! of the Esbjerg data for the period 1889-1994. A similar analysis is show
~c! and~d! for Esbjerg~d!, Torshavn~h!, Hanstholm~n!, and Hirtshals~,! for the period 1972–1994. It is evident that Esbjerg has mu
larger tides than the other sites.
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2~a! and 2~b!. There is in fact a small, roughly linear increa
in time in both the standard deviation (;10%) and the mean
~;15 cm or;25% of the standard deviation!. Such trends
are known to occur@5,6#. They are sufficiently small, how
ever, that if the data are rescaled to have zero mean a
constant standard deviation, the shape of the power spec
is unaffected. A similar analysis for three other stations in
near the North Sea, albeit with shorter time reco
(;22 year), is shown in Figs. 2~c! and 2~d!. Both the means
and standard deviations appear to be constant over
shorter period of time.

The power spectrum is defined asS( f )5^u ỹ( f )u2&,
whereỹ( f ) is the Fourier transform of the data set$yi%, and
the angular brackets indicate averaging. In order to comp
it, it is necessary to fill in the gaps. This was done by repl
ing them with the local mean value determined from line
fits through the yearly means shown in Figs. 2~a! and 2~c!.
Amusingly, the worst gap problems appeared at recent ti
when the recording apparatus was fully automated. Con
quently, in our analysis, we used just the first 720 896 po
(;82 year) which had not only a smaller gap fracti
~1.7%! but also far fewer gaps exceeding lengths of 1
which could conceivably contaminate the more interest
lower frequency portion of the spectrum.~As a check, we
compared the spectrum for the full data set with the sh
ened one~both corrected!, and found no significant differ-
ences, also when the spectra were averaged, implying
the correction alone was sufficient to obtain a clean sp
trum. As further evidence that this was the case, we a
computed the spectrum of the more gap prone points
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were removed, and found it was consistent with the previ
spectra. Finally, we computed the spectrum of an essent
gap-free region of the data, and it too was consistent with
others.!

The power spectrum of the Esbjerg data is shown in F
3. Figure 3~a! shows the power spectrum without any ave
aging. At lower frequencies it is nearly white. At higher fr
quencies it becomes obscured due to the large statistical
tuations. To examine higher frequencies, it is theref
necessary to average the power spectrum, and this is
advantage of having such a long time record. This is sho
in Fig. 3~b!. The length of the averaged segments has b
chosen so that the resulting spectrum contains all the es
tial features of the broadband structure. The crossover
nearly white spectrum is now seen to occur
f L;531027 Hz;(20 d)21. Above this frequency, there i
a region where we believeS( f ); f 21.2. Then at a frequency
f c;531026 Hz;(2 d)21, the spectrum crosses over rath
sharply into a regime where it appears thatS( f ); f 22.4 un-
derneath the tidal peaks.~The spectrum flattens again ne
the Nyquist frequency, probably as a result of aliasing.! Al-
though we fully realize that this interpretation of the spe
trum is open to question, it led us to develop the mo
discussed in Sec. III, which in turn showed that it is, in fa
a physically plausible possibility.

The lunar tidal peaks are clearly visible
f '1.131025 Hz ~lunar parallax, 24.84-h period! and
f '2.231025 Hz ~principal lunar, 12.42-h period!, plus their
various harmonics and sidebands. A blowup of this region
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56 2607CORRELATIONS IN SEA-LEVEL ELEVATIONS
shown in Fig. 4. Tidal spectra have been studied in gr
detail, and we will not discuss them further@5,7#.

B. Other locations

We have also examined the sea-level elevation records
a number of other sites both in the North Sea and around
globe, a small fraction of which we now present here. A
though some of these records cover periods of no more

FIG. 3. Power spectrum of the Esbjerg data:~a! Unaveraged.
~The first few points reflect the shape of the window function a
should be disregarded. Also, the full spectrum up to the Nyq
frequencyf Ny.1.431024 Hz has not been shown for reasons
clarity.! The solar annual tidal peak can be seen
f '3.231028 Hz. ~b! Averaged. The spectrum consists of 46 av
ages~50% overlap!. The lunar tidal peaks are visible at the righ
The solid lines are shown for reference.

FIG. 4. A blowup of the lunar tidal peaks shown in Fig. 3~b!.
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25 years, so their spectra cannot be as heavily averaged,
nevertheless yield various clues as to the underlying p
cesses that produce them. Figure 5~a! shows the Esbjerg
spectrum from Fig. 3~b! together with the spectrum from
Torshavn, Faroe Islands, which lies just at the entrance to
shallow North Sea. Although the Torshavn spectrum cons
of only 11 averages, and its broadband structure is there
less well defined than Esbjerg’s, they appear to have roug
the same shape. This also proved to be the case for the
of Hanstholm and Hirtshals, both of which lie close to Es
jerg on the Danish coast.

This is definitely not the case for locations in other pa
of the world. Figure 5~b! compares the spectrum from Es
jerg with one from Hong Kong. The Hong Kong spectru
appears to have the same qualitative behavior as Esbjerg
both f L and f c occur at lower frequency. Figures 5~c! and
5~d! show spectra from Antofagasta, Chile and the Yap
lands, respectively, neither of which is even qualitative
similar to Esbjerg’s. We will discuss these spectra further
Sec. IV.

C. Spatial correlations

It is also instructive to examine the cross-spectru
S(x1 ,x2 , f )5^ ỹ(x1 , f ) ỹ* (x2 , f )& between sites atx1 and x2
to study spatial correlations. The cross-spectrum can be
malized to form the coherence functionk( f )5
S(x1 ,x2 , f )/AS1( f )S2( f ), so thatuk( f )u lies between 0 and
1. The magnitudes of the coherence function for Esbje
Torshavn and Hanstholm-Esbjerg are shown in Fig. 6~a!.
They indicate that the respective pairs of sites are correla
especially at low frequencies, which is perhaps not surp
ing. As might be expected, Hanstholm is more correla
with Esbjerg than Torshavn since it is much closer.
greater interest is the phase of the coherence functionQ( f )
which is shown in Fig. 6~b!. In both cases, it increases a
most linearly up to;1025 Hz, beyond which it can no
longer be reliably determined. This suggests that at cer
frequencies there is a single characteristic time associ
with the flow of information. For dispersion-free waves, th
would simply be the transit time between sites, which wou
explain the larger slope for Esbjerg-Torshavn. Furthermo
the sign of the phase determines the flow direction: Torsh
to Esbjerg to Hanstholm. We will discuss the implications
the phase further in Sec. IV. The coherence function
widely separated sites, such as that for Esbjerg and H
Kong, shows no signs of correlations except at the ti
peaks.

III. SYSTEM MODEL

We assume that the system is linear, which will be true
long as the wave amplitudeA is small compared to the wave
length l. We will also assume that we are always in t
shallow-water limit, i.e., that the unperturbed water depthh
is also very small compared tol. It is well known that, for a
constant depth~undamped!, shallow-water gravity waves
obey the ordinary wave equation (1/c2)]2w/]2t5¹2w
wherew(x,t) is the displacement of the water from its equ
librium height, andc5Agh is the wave velocity whereg is
the gravitational acceleration@8#. Its dispersion relation is

d
t

t
-
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FIG. 5. Comparison of the Esbjerg power spectrum with those of~a! Torshavn,~b! Hong Kong,~c! Antofagasta, Chile, and~d! Yap
Islands.
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f 56c/l ~or v56ck). The linearity condition breaks dow
at short wavelengths, which for the highest frequencies
Fig. 3~b! ( f ;1024 Hz) and even a very small water dep
h510 m givesl;105 m, whereas generallyA,10 m. The
shallow-water condition requires in addition thath!l which
is satisfied even in the deepest oceans.

A. Kelvin waves

The rotation of the earth affects the motion of grav
waves, primarily due to the Coriolis force. For example, in
rotating channel of uniform shallow depth in a flat geomet
the equation of motion becomes@8#

]

]t S ]2w

]t2 1v f
2w2c2¹2w D50, ~1!

with the boundary conditions

]2w

]y]t
2v f

]w

]x
50, y50,L, ~2!

where (x,y) are the directions along the channel axis a
transverse to it, respectively,v f is twice the rotation fre-
quency of the channel, andL is its width. We will assume
that this simple system describes gravity waves in the No
Sea~f-plane approximation!. ~We regard the depth as con
stant, on average. We therefore do not consider topogra
in

,

d

th

ic

FIG. 6. The magnitude~a! and phase~b! of the coherence func-
tion for Esbjerg-Torshavn~solid line! and Hanstholm-Esbjerg
~dashed line!. The dotted lines in~b! are linear fits~see text!.
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56 2609CORRELATIONS IN SEA-LEVEL ELEVATIONS
waves such as Rossby waves. Furthermore, we ignore
pler shifting since even a fast sea current travels no m
than;1 m/s.!

This system has two types of propagating waves. The
is Poincare´ waves which satisfy the dispersion relatio
v25v f

21c2(k21n2p2/L2), where n is an integer. The
lowest-lying Poincare´ mode in the North Sea, i.e.,n51 with
v f51.231024 Hz, h5100 m, andL5500 km, would be
expected to occur atf ;331025 Hz in the vicinity of the
tidal peaks. However, Poincare´ waves are generally not ob
served@9#, probably because they are sensitive to the geo
etry, which is not regular, and hence are effectively smea
out.

The second type is Kelvin waves, which obey the or
nary one-dimensional wave equation along the channel
and hence have the dispersion relationv56ck. However,
in the transverse direction, they have a time-independent
file w(y);e7y/R for waves traveling in the6x-direction,
whereR5c/v f is the Rossby radius of deformation. For
water depthh5100 m, c;30 m/s, andR;250 km. Thus,
in the North Sea, Kelvin waves near the coast propag
essentially counterclockwise, since the amplitude of the
posite going waves is diminished by a factor of roughly 1/e2.
We therefore assume that gravity waves in the North Sea
purely unidirectional Kelvin waves which can be describ
by the one-dimensional wave equation.

B. Telegraph equation

Next, we must include the effects of damping, i.e., t
viscosity n. It can be shown that in the extreme shallo
water limitkh→0, the dispersion relation for damped gravi
waves becomesv52 igk2h3/3n, i.e., the motion is purely
diffusive with diffusion constantD05gh3/3n @10#. Thus, at
sufficiently low frequencies gravity waves are overdamp
and they conveniently obey the ordinary diffusion equat
]w/]t5D0¹2w. There is one important consideration, ho
ever. The Reynold’s number of even a rather shall
(h5100 m) sea current typical of the North Sea~mean ve-
locity v̄;0.3 m/s! is Re5hv̄/n'33107, so the flow is
clearly turbulent. In such a case, the effective viscosity
be much larger. It has been argued that this turbulent vis
ity is roughly given byn t /n;Re/Rec where Rec is the criti-
cal Reynold’s number associated with the system@11#. For a
sphere, for example, Rec;100, but, for plane Poiseuille flow
it is much larger, in fact Rec;6000, so it is possible tha
n t /n;104– 105. This is consistent with the estimated ver
cal turbulent viscosity of the oceanAV;1 – 1000 cm2/s @8#.
~Since turbulent motion only occurs at scales smaller t
the water depth, it will not otherwise affect shallow-wat
gravity waves whose wavelengths, by definition, are mu
larger.!

The wave and diffusive properties of shallow-water gra
ity waves can be expressed by the so-called telegraph e
tion usually used to describe the propagation of electrom
netic waves in a conducting medium,

1

c2

]2w

]t2 1g
]w

]t
2¹2w5F~x,t !, ~3!

where g is a positive damping constant andF(x,t) is a
source term. Its dispersion relation isD(k,v)5k22K250,
p-
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whereK25v2/c21 igv. The telegraph equation has the d
sired limiting behavior with respect to the crossover fr
quencyvc5gc2. At low frequenciesv!vc it reverts to the
diffusion equation. We then see thatg5D0

21, and conse-
quently vc53n t /h2. ~Following our discussion above, w
will henceforth use the turbulent viscosity in place of t
ordinary viscosity.! At high frequenciesv@vc it will be-
have as a wave equation.

The crossover frequencyvc has a simple physical inter
pretation, i.e., it is where the penetration dep
d5(2n t /v)1/2;h. At high frequencies the penetration dep
is small, and dissipation at the bottom is not important.
low frequencies the penetration depth becomes compar
to the depth, dissipation becomes dominant, and waves
no longer propagate, i.e., one only observes relaxation.
we will show later, this crossover appears in the power sp
trum and it is in fact the same one visible in Fig. 3~b! at
f ;531026 Hz, as discussed in Sec. II A. For a dep
h5100 m this implies thatn t /n;105 which is consistent
with our rough estimate earlier.

If we write K5k01 ib, then, for the telegraph equation

k0

b J 5
v

c
FA11vc

2/v261

2 G1/2

. ~4!

At low frequenciesb.(gv/2)1/25(3n tv/2gh3)1/2. At high
frequenciesb→gc/2, but this cannot be correct since th
manner in whichg was introduced was valid only at low
frequencies. In fact, for shallow-water gravity waves in t
weak-damping approximation it can be shown that@12#

b.~n tv/8gh3!1/2. ~5!

For n t50.1 m2/s and h5100 m, this is valid up to
f ;1022 Hz. For reference, the damping length
f 51024 Hz is thenb21;1000 km.

C. Noise source

We now imagine that the Kelvin waves are driven
unspecified random forces. We will therefore use the Lan
vin approach, and summarize these forces as a stoch
source term. However, their spatial distribution may depe
on their origin. For example, the tide in the North Sea ent
from the Norwegian Sea and runs counterclockwise with
amphidrome near its center@9,13#. The tide motion is there-
fore effectively one dimensional~albeit rotating!, with an
apparent source in the North Atlantic. Since the tides in
North Sea are, in fact, due to Kelvin waves, we may supp
that the Kelvin waves have a local source also, at least at
frequencies.~Local forcing has been considered previous
for the diffusion equation, but by employing noisy bounda
conditions@3#. However, there are no such apparent bou
ary conditions in the North Sea, so a source term seems m
appropriate.! For a one-dimensional system, the obvious a
simplest choice is a point source. At high frequencies, on
other hand, the system is more likely to be driven globally
wind forces or atmospheric pressure variations. In this c
the source is translationally invariant in space as well as
time.
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A spatially distributed source can be written
F(x,t)5a(x)h(x,t) where a(x) is the spatial amplitude
and, as usual,

^h~x,t !&50, ~6a!

^h~x,t !h~x8,t8!&52Gd~x2x8!d~ t2t8! ~6b!

for some constantG. For a global~spatially uniform! source
a(x)51. For a point source atx0 , a(x)5d(x2x0) and the
spatiald function in Eq.~6b! should be replaced with a Kro
necker delta. The correlation function ofF(x,t) can then be
written as

SF~x,x8,t,t8!5^F~x,t !F~x8,t8!&

52Gr~x!d~x2x8!d~ t2t8!, ~7!

where for a global sourcer(x)5@a(x)#251 and for a point
sourcer(x)5d(x2x0). ~Of course,G must be different for
the two cases.!

In the diffusive limit (v!vc) the noise is nonconserving
i.e., the fluid displacementw ~and hence, for an incompres
ible fluid, the fluid volume! will not be strictly conserved
@14#. In fact, this is desirable since, at low frequencies a
hence for long times, one does not expect strict conserva
due to nonconserving processes such as rain and evapor
For short times, however, one expects the water height to
conserved. Although the situation is more complicated in
wave regime (v@vc), the form Eq. ~7! can, in fact, be
consistent with a conserving source if there are height fl
tuations due to noise in the hydrostatic forces, presuma
originating from the boundary conditions at the surface.
this case we can just regard the wave equation as the f
equation for the surface displacement.

D. Correlation function

We can now compute the correlation functio
S(x,x8,t,t8)5^w(x,t)w(x8,t8)&. Using the Fourier trans
form w̃(x,v)5*w(x,t)eivtdt, we first write w̃(x,v)5

*G̃(x,x8,v)F̃(x8,v)ddx8, where G̃(x,x8,v) is the infinite
domain Green’s function andd is the dimension of the sys
tem. The correlation function can then be written as@15,16#

S~x1 ,x2 ,v!5E G̃~x1 ,x8,v!G̃* ~x2 ,x9,v!

3SF~x8,x9,v!ddx8ddx9. ~8!

From Eq. ~7! we have thatSF(x,x8,v)52Gr(x)d(x2x8),
and so,

SN~x1 ,x2 ,v!5E G̃~x1 ,x8,v!G̃* ~x2 ,x8,v!r~x8!ddx8,

~9!

whereSN(x1 ,x2 ,v)5S(x1 ,x2 ,v)/2G. For a point source a
x0 , this simplifies to

SN~x1 ,x2 ,v!5G̃~x1 ,x0 ,v!G̃* ~x2 ,x0 ,v!. ~10!

The spectral form of the correlation function corresponds
course, to the cross-spectrum discussed in Sec. II C.
d
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ion.
be
e

c-
ly
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The power spectrum is just the correlation function me
sured at a single point, i.e.,x15x25x. For a global source
@r(x)51# this is,

SN~v!5E uG̃~x,x8,v!u2ddx8. ~11!

~The system is translationally invariant so the power sp
trum must be independent of the measuring position.! For a
point source we have,

SN~x,v!5uG̃~x,x0 ,v!u2. ~12!

The telegraph equation Eq.~3! has plane-wave eigenfunc
tions so its Green’s function can be written as

G̃0~x,x8,v!5
1

~2p!d E eik•~x2x8!

D~k,v!
ddk, ~13!

which, for a single source of spatially decaying outgoi
waves, is@17#

G̃0~x,x8,v!5~ i /2K !eiK ux2x8u ~d51!, ~14a!

G̃0~x,x8,v!5~ i /4!H0
~1!~Kux2x8u! ~d52!, ~14b!

G̃0~x,x8,v!5~1/4pux2x8u!eiK ux2x8u ~d53!, ~14c!

where H0
(1)(z) is a Hankel function of the first kind and

K51(v2/c21 igv)1/2.
We have not, as yet, discussed the white noise at very

frequencies found in most of the measured spectra. Thi
presumably a consequence of the finite sizeL of the system,
which we have not considered in the analysis so far. T
would introduce a cutoff at small wave vectorskL;1/L in
the integral Eq.~13! with the result thatG̃0(x,x8,v)→const.
when v,v(kL). Hence the correlation function will also
become constant belowvL5v(kL).

It is now straightforward to compute the correlation fun
tion explicitly for specific cases. We will considerd52 for
completeness, although we have assumed all along tha
relevant phenomenon is one-dimensional Kelvin waves.

1. Point source

~a! d51: If both x1.x0 andx2.x0 , i.e., both measuring
points are on the same side of the source, then, substitu
Eq. ~14a! into Eq. ~10! we find,

SN~x1 ,x2 ,v!5
1

4uKu2 eik0je2b~x12x0!e2b~x22x0!, ~15!

where j5x12x2 . The phase is independent of the sour
positionx0 and is simply

Q~v!5k0j, ~16!

wherek0(v) is given by Eq.~4!. We can write the power
spectrum Eq.~12! as

SN~x,v!5
e22b~x2x0!

4gv@11v2/vc
2#1/2. ~17!
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56 2611CORRELATIONS IN SEA-LEVEL ELEVATIONS
It should be noted thatb, whose behavior is incorrect at hig
frequencies as discussed in Sec. III B, only appears in
damping factor.~The phase does not depend onb at all.!
Ignoring the damping factor, we see immediately th
SN(x,v);(gv)21 for v!vc and SN(x,v);(v/c)22 for
v@vc .

~b! d52: In this case the correlation function is just

SN~x1 ,x2 ,v!5 1
16 H0

~1!~Kux12x0u!H0
~2!~K* ux22x0u!,

~18!

and the power spectrum is therefore

SN~x,v!5 1
16 uH0

~1!~Kux2x0u!u2. ~19!

It is more instructive to use the asymptotic form of the Ha
kel function H0

(1)(z).(2/pz)1/2ei (z2p/4). ~We ignore the
logarithmic singularity asz→0, since it can only be observe
at frequencies corresponding to length scales far greater
any in the system.! Then Eq.~19! can be written as

SN~x,v!.
e22bux2x0u

8puKuux2x0u
. ~20!

The above results are shown schematically in Fig. 7
general, we find for a point source that~without damping
factors!

FIG. 7. Power spectra of the telegraph equation driven b
point noise souce for~a! d51 and~b! d52.
e

t
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n

SN~x,v!;uKud23; Hv~d23!/2

vd23
~v!vc!

~v@vc!.
~21!

2. Global source

Using the representation Eq.~13!, the correlation function
Eq. ~9! can be written as

SN~x1 ,x2 ,v!5
1

~2p!d E eik•~x12x2!

uD~k,v!u2 ddk. ~22!

For an isotropic systemD(k,v) can only depend onk2, so
the correlation function must be real and henceQ(v)50
always. A simple scaling of Eq.~22! shows that in the dif-
fusive regime of the telegraph equation (v!vc), the power
spectrum behaves asSN(v);v (d/2)22. The wave regime be-
havior is more complicated, and will be discussed shortly

If, in addition to being isotropic, ImD(k,v) is indepen-
dent of k, then there is a simple connection between E
~13! and ~22!, namely,

SN~x1 ,x2 ,v!52ImG̃0~x1 ,x2 ,v!/ImD~k,v! ~23!

which resembles the fluctuation-dissipation theorem@18#.
For the special caseD(k,v)5k22K2, this becomes

SN~x1 ,x2 ,v!5ImG̃0~x1 ,x2 ,v!/2bk0 . ~24!

For the telegraph equation, the infinite domain Green’s fu
tion is equivalent to the response function, and 2bk05gv
from Eq. ~4!, so we recover the fluctuation-dissipation the
rem explicitly. As we have discussed, however,b does not
behave as predicted by the telegraph equation at high
quencies. This is especially relevant for a global sour
since damping is necessary in the wave regime to pres
stationarity~whereas for a point source the energy can ra
ate away!. In principle, the true response function must
computed from the full~linearized! Navier-Stokes equation
with the appropriate boundary conditions~from which the
true form ofb is actually derived!, and this is not equivalen
to the infinite domain Green’s function. Consequently, t
form D(k,v)5k22K2 can no longer be valid for all wave
vectors. Nevertheless, it should still correctly describe
high- and low-frequency limiting behavior. Thus, if we us
the true form ofb in the Green’s functions Eqs.~14!, they
will also retain the correct high- and low-frequency limitin
behavior, and thus become useful approximations.@These
remarks are also relevant for a point source sinceb still
appears in the damping factors in Eq.~15!.#

~a! d51: Using Eq.~14a! and the relation Eq.~24!, we
find

SN~x1 ,x2 ,v!5
e2buju

4bk0uKu2 @k0cos~k0j!2b sin~k0uju!#.

~25!

As expected, the correlation function is real and so the ph
is always zero. It also has oscillations that would be obse
able. The power spectrum (j50) is then just

SN~v!51/4buKu2. ~26!
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This result implicitly assumes that one is measuring wa
traveling in both directions. As discussed in Sec. III A, ho
ever, Kelvin waves are effectively uni-directional. Thus w
must return to Eq.~9! and compute the correlation functio
by explicitly writing the Green’s function Eq.~14a! as a sum
of positive- and negative-going waves, i.e.,

G̃0~x,x8,v!5~ i /2K !@eiK ~x2x8!u~x2x8!

1e2 iK ~x2x8!u~x82x!#, ~27!

whereu(x) is the unit step function. Then keeping only th
positive-going contribution, Eq.~9! yields

SN~x1 ,x2 ,v!5
1

8buKu2
eik0je2buju, ~28!

which has a nonzero phaseQ(v)5k0j just as for a point
source. The power spectrum is, of course, just half of wha
was for the bidirectional result Eq.~26!.

~b! d52: Using Eq.~24! again, we find

SN~x1 ,x2 ,v!5
1

16bk0
@H0

~1!~Kr !1H0
~2!~K* r !#, ~29!

wherer 5ux12x2u. The power spectrum is therefore

SN~v!51/8bk0 . ~30!

The results for a global source are shown schematicall
Fig. 8. In general, we find that~ignoring damping factors!

SN~v!;b21k0
d23; Hv~d/2! 22

vd23
~v!vc!

~v@vc!.
~31!

The high-frequency behavior now depends explicitly onb,
which it did not for a point source~excluding damping fac-
tors!. As discussed earlier in this section, we can obtain
correct spectra for damped gravity waves by using the
form of b in Eq. ~31!. In particular, if we use the weak
damping approximation Eq.~5!, thenSN(v);vd27/2 in the
wave regime (v@vc). The corrected spectra are shown
dashed lines in Fig. 8.

3. Power spectrum of the spatially averaged field

The results of the previous sections should also be c
pared with the spectrum of the spatially averaged field u
ally presented in the literature@3#. This can be written as

SN(v)5L22d*SN(x1 ,x2 ,v)ddx1ddx2 . Using Eq. ~22! we
obtain the expected result for a global sour

SN(v)5L2duD(k50,vu22. ~The result is the same for
point source except that it should be divided by another f
tor of Ld.! In the diffusive regime, we therefore obtain th

well-known resultSN(v);v22 which holds in all dimen-
sions. If, on the other hand, the system is forced to h
noisy boundaries, as opposed to a noisy source term,

SN(v);v21 in all dimensions@3#. However, as in the
present work, the spatially averaged field is often not wha
actually measured.
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IV. COMPARISON OF MODEL AND DATA

We will now discuss which of the possible scenarios p
sented in Sec. III D are relevant for the sea-level elevat
data.~We only considerd51, since this was one of the origi
nal assumptions of the model.!

A. Damping factor

The damping factors which we have ignored thus far m
be important at high frequencies. Using the weak-damp
approximation forb, Eq. ~5!, we can rewrite the damping
factor in Eq. ~17! as exp@22b(x2x0)#5exp@2(f/f0)

1/2#,
where f 05gh3/pn t(x2x0)2. If f 0. f c , then x2x0,
(3/2)1/2(c/p f c);2300 km. In other words, the fact that w
do not see an obvious exponential decay in the Esbjerg s
trum @Fig. 3~b!# implies that the apparent source cannot
further away than this distance.~The stretched exponentia
dependence of the damping on frequency weakens its e
even more.! Furthermore, as discussed in Sec. II B, we
not observe any significant difference between the Esb
and Torshavn spectra. According to the above argument,
latter ought to be much closer to the source, and thus
display any of the effects of damping, if present. We the
fore conclude that the damping factors are not importan
the studied frequencies.

FIG. 8. Power spectra of the telegraph equation driven b
global noise source for~a! d51 and ~b! d52. The dashed lines
show the corrected spectra using the weak-damping approxima
for b @Eq. ~5!# ~see text!.
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B. Esbjerg

The Esbjerg spectrum, Fig. 3~b!, could perhaps be pro
duced by a point source as given by Eq.~17!. From the
argument in the previous section, it would have to be loca
no more than;2000 km away, otherwise the effects
damping would be manifest. This would explain the nonz
phase in the measured cross-spectra with Torshavn and
stholm @see Fig. 6~b!# predicted by Eq.~16! ~at least in the
wave regime, since it is quite impossible to resolve the v
small phases in the diffusive regime!. However, the mea-
sured slopes in the spectrum are noticeably steeper tha
predicted ones. It would seem more likely, therefore, ba
on the arguments of Sec. III C, that the system is driven
global forces, at least in the wave regime where the m
sured and predicted exponents would then be roughly
agreement. The diffusive regime could still be produced b
point source, although perhaps contaminated by global f
ing. A nonzero phase then requires that only unidirectio
waves be present as we expect for Kelvin waves in the N
Sea.

If we fit the measured phases to the high frequency fo
of Eq. ~16! Q(v).vj/c, then for c530 m/s, we find
j'2800 km for Esbjerg-Torshavn andj'400 km for
Hanstholm-Esbjerg. The first should be compared not w
the direct distance between Torshavn and Esb
(;1200 km), but with the length of the counterclockwi
tidal path in the North Sea that the Kelvin waves also p
sumably follow (;2000 km). The second distance is in r
ality ;200 km. The discrepancies may suggest that we h
overestimated the wave speed, and hence, the depth, pa
larly in the relatively shallower water between Esbjerg a
Hanstholm.

We can estimateL from the crossover to white noisef L

in the Esbjerg, spectrum, Fig. 3~b!. ~The spectrum belowf L

is actually not quite white which may indicate that the sou
spectrum may also not be white as we have assumed.! In the
diffusive regime 2p f L;D0kL

2 , which gives L5(c/2p)
3( f cf L)21/2;3000 km. This is roughly the size of th
North Atlantic basin.

C. Other locations

The discussion in Sec. IV B also applies to the Ho
Kong spectrum Fig. 5~b!. As discussed in Sec. II B bothf L

and f c occur at lower frequencies than in the Esbjerg sp
le
eo
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the
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a
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th
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ve
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trum, although the two spectra are otherwise rather sim
The first shift implies that the ‘‘size’’ of the Hong Kong
system is larger than Esbjerg’s. The size might be the len
of the continental shelf from the Yellow Sea to the Golf
Tonkin (;3000 km). The second implies thatn t /h2 is
smaller than in the North Sea, but this is difficult to che
independently.

The spectrum from Antofagasta, Chile, shown in F
5~c!, is probably a consequence of a different process a
gether. First, the water is much deeper than in the North
(h.3000 m) which should result in a distinctly smalle
crossover frequencyf c ~bearing in mind thatn t also depends
on h!. The measured spectrum would therefore be entirely
the wave regime, but the slope is not consistent with th
predicted by our model for either a point or a global sour
Second, the Kelvin wave theory requires a uniform de
which is not the case here. In fact, if allowance is made
both the sloping topography at the coast and a realistic d
sity stratification, then it is known that coastal trapped wav
can exist causing coastal sea-level fluctuations with ti
scales of;1 – 20 d @19#. These may be responsible for th
observed spectrum. The Yap Islands are in the open se
presumably the gravity waves there are not Kelvin wav
and consequently the spectrum Fig. 5~d! cannot be under-
stood in the context of this work.

D. Concluding remarks

It is difficult, of course, to assign a definite explanation
any given spectrum. Unlike a laboratory experiment, it
impossible to make a systematic survey of the various c
trol parameters governing sea-level elevations, or even
obtain the data quality required to resolve competing th
ries. However, we feel that there is a certain self-consiste
between the data and the model presented in this work th
not accidental. Unfortunately, the more interesting spec
where both the diffusive and wave regimes are manifest
quire rather special conditions, specifically, a large boun
body of relatively shallow water. Nevertheless, the metho
employed are sufficiently general that they may be ap
cable to other systems as well.
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